频谱分析仪和信号分析仪的区别方法

          频谱分析仪的频率范围宽,灵敏度高,非常适于通信设备和链路的频率分布测量,缺点是只能获得输入信号的幅值.矢量信号分析仪频率范围较低,利用FFT的特点能够同时获得幅度和相位,特别地**、二、三代移动通信,包括蜂窝、GSM和CDMA设备的测量.
          在实验室和车间常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,它把时间信号分解成正弦和余弦曲线的叠加,完成信号由时间域转换到频率域的过程。
          早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率增高,测量时间缩短,扫频范围扩大,这就是现代频谱分析仪的优点了。
    矢量信号分析仪是在预定,频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。
    频谱分析议和FFT颁谱分析议
    传统的频谱分析仪的电路是在一定带宽内可调谐的接收机,输入信号经下变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。
    但是,传统的频谱分析仪也有明显的缺点,首先,它只适于测量稳态信号,不适宜测量瞬态事件;*二,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器;*三,它需要多种低频带通滤波器,获得的测量结果要花费较长的时间,因此被视为非实时仪器。
    既然通过傅里叶运算可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,出现基于快速傅里叶变换(F盯)的频谱分析仪。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。据此可知,这种频谱分析仪亦称为实时频谱分析仪,它的频率范围受到ADC采集速率和FFT运算速度的限制。
    为获得良好的仪器线,性度和高分辨率,对信号进行数据采集的ADC需要12位-16位的分辨率,按取样原理可知,ADC的取样率少等于输入信号高频率的两倍,亦即频率上限是100MHz的实时频谱分析仪需要ADC有200MS/S的取样率。
    目前半导体工艺水平可制成分辨率8位和取样率4GS/S的ADC或者分辨率12位和取样率800MS/S的ADC,亦即,原理上仪器可达到2GHz的带宽,此时垂直分辨率只有8位(256级),显然8位分辨率过低,因此,实时频谱分析仪适用于制MHz带宽以下的频段,此时具有12位(物96级)以上的分辨率。为了扩展频率上限,可在ADC前端增加下变频器,本振采用直接数字事成的振荡器,这种混合式的频谱分析仪适合在几GHz以下的频段使用。
    FFT的性能用取样点数和取样率来表征,例如用100KS/S的取样率对输入信号取样1024点,则高输入频率是50KHz和分辨率是50Hz。如果取样点数为2048点,则分辨率提高到25Hz。由此可知,高输人频率取决于取样率,分辨率取决于取样点数。FFT运算时间与取样,点数成对数关系,频谱分析仪需要高频率、高分辨率和高速运算时,要选用高速的FFT硬件,或者相应的数字信号处理器(DSP)芯片。例如,10MHz输入频率的1024点的运算时间80μs,而10KHz的1024点的运算时间变为64ms,1KHz的1024点的运算时间增加至640ms。当运算时间**过200ms时,屏幕的反应变慢,不适于眼睛的观察,补救办法是减少取样点数,使运算时间降低至200ms以下。
    矢量网络分析仪
    对于频谱分析和电磁干扰测量来说,频谱分析仪是通信测量仪器中常用的设备,由于具有大于1∞dB的动态范围、低于-110dBc/Hz的噪声、1Hz-100Hz的带宽、50GHz以上的频率范围,能够接收到较微弱的信号和分辨出两个幅度相差很大的信号。频谱分析仪的缺点是只能显示频率分量的幅值,而不能获得信号的相位。对于某些通信元器件和通信链路,幅值和相位必须能够同时测量出来,前者如放大器和振荡器,后者是**代至*三代的移动通信。
    前面曾提及,为了扩大基于FFT的频谱分析仪的频率范围,可在前端增加下变频器。同样原理可用于矢量信号分析仪,它是传统频谱分析仪与F阿分析仪的结合,从而获得在高频和射频频率下的FFT分析能力,同时显示幅度和相位信息。对于现代通信的数字调制分析,以及调幅/调频/调相的解调都是非常有效的手段。
    频谱分析仪的变频前端扩展仪器到GHz的频段,经变频后的输入信号频率变成适于FFr处理的频段,电路中的滤波器与频谱分析仪的滤波器不同,这里的滤波器不是选择性的,而防止ADC变换过程产生的信号混叠,即变换过程中出现的虚假信号。ADC的输出分成两路,获得同相和正交信号,经DSP作时间一频率的F町运算后由显示屏获得频谱的幅度和相位。
    目前仪器公司供应的矢量信号分析器的频率范围可达3GHz,测量对象是复杂的移动通信常用频段的调制信号,如GSM、CDMA的基带特性和载波特性。矢量信号分析仪的测量模式有:标量、矢量、数字解调和门控测量。触发可由基带输人信号或由中频信号调节,包括触发电平和相位。扫频方式有单次和连续,对测量数据可多次平均,并用有效值(RMS)、峰值保持和指数坐标指示。
    一种新型的矢量信号分析器的重要特性是:频率范围—DC~2.7GHz;基带带宽—40MHz;中频带宽—36MHz;率分辨率—0.001Hz时基准确度—0.2ppm/年;相位噪声—97dBc/Hz(载波偏移100Hz),-122dBc/Hz(载波偏移1khz)幅度范围45~+20dBm;幅度准确度—±2dB;三阶互调失真—70dB。应用领域是卫星通信、扩频跳频通信、点到点通信、以及频率监控和搜索。以移动通信的码分多址(CDMA)来说,利用配套的分析软件,可以获得:
    ·发射机的平均载波功率
    ·功率随时间的变化
    ·相位和频率误差
    ·邻近信道功率比
    ·伪随机噪声序列的调制精度
    ·近距离寄发生发射频率
    ·频谱测量和波形测量
    在无线基站或移动电话的产品开发和产品检验中,矢量信号分析仪可按多种工业标准,对GSM、CDMA等的发射机和手机进行严格的精度和动态范围测量。在CDMA等通信产品生产中,只利用连续测量是不够的,利用数字调制信号可方便地测出输出功率和失真等重要参数。
    矢量信号分析仪采用Windows平台,容易通过外接微机进行数据处理和交换,Windows平台便于性能升级和利用其他工程设计工具,熟识的图形界面可缩短学习时间,留出更多的时间进行测量和应用各种设计及测试工具。
    数字存储示波器的频谱测量
    数字存储示波器(DSO)的前端就是ADC变换,因而同样具有频谱分析能力,通过标准或选购的FFT模块获得频谱分析特性。应该指出,DSO主要特点是时域测量,带宽100MHz的产品具有10位以上的垂直分辨率,带宽500MHz的产品只有8位的分辨率,亦即在分辨率上低于频谱分析仪的12位-16位。DSO的前置放大器和衰减器引人瞬态失真,容易在频谱图上表现为低电平的谱波噪声。
    特别是高频数字在存储示波器,它采用交叠的ADC来提高取样率,例如每块ADC的取样率是1Gs/s,两块叠加起来获得2Gs/s的取样率。这是简便的提高有效带宽的办法,但用于频谱显示时,各ADC的线性度、增益、频率响应和取样定时稍有差别,都会在取样时钟脉冲交叠取样过程中引人频谱失真,相当多了一组Fs/N的取样脉冲,这里且是基本取样频率,N是交叠的ADC数。这种电路自身产生的混叠信号不容易用滤波器消除,用DS0测量高频信号时要非常小心在频谱图上出现的混叠信息。例如,利用上述两块取样率1Gs/s ADC构成的DSO来观察l00MHz正弦波时,会在900、1100MHz附近出现虚假信号。由此可见,DSO观察时域信号是好的仪器,由于频域变换后往往出现虚假信号,测量频谱特性时一定要注意“去伪存真”。
    小结
    频谱分析仪的频率范围宽,灵敏度高,非常适于通信设备和链路的频率分布测量,缺点是只能获得输入信号的幅值。矢量信号分析仪频率范围较低,利用FFT的特点能够同时获得幅度和相位,特别地**、二、三代移动通信,包括蜂窝、GSM和CDMA设备的测量。


    东莞市塘厦魅米电子仪器经营部专注于万用表,示波器,电源等

    推荐阅读
    3升摇臂式托盘压盖机,稀释液压盖机

    3升摇臂式托盘压盖机,稀释液压

    3升摇臂式托盘压盖机,稀释液压盖机上海广志自动化设备有限公司提供自动化助剂灌装机、酒水灌装机、固化剂灌装机、液面上灌装机、四头灌装机等多款成套包装设备,广泛应用于食品、、日化、农化等行业。我们以客户满意度为,不断推陈出新,为客户提供的解决方案。3升摇臂式托盘压盖机,稀释液压盖机的参数:充填容量:1-10l充填速度:30-40瓶/分钟装量精度:±1%主机功率:2KW 220V机器重量:1

    作者:上海广志自动化设备有限公司 3升摇臂式托盘压盖机,稀释液压
    2023-11-25684
    湘创SLKG1-1000A/3隔离开关厂家报价

    SLKG1-1000A/3隔离开关厂家报价

    湘创SLKG1-1000A/3隔离开关厂家报价 三相电压表是高性能的三相电流监控采集装置,具有高精度电流参数实时测量,并配置有丰富的输入输出接口可用于现场设备状态的监测与控制,还集成了RS485能讯接口,可与各种智

    作者:醴陵市湘创电器有限公司 SLKG1-1000A/3隔离开关厂家报价
    2023-11-25520
    福意联 FYL-YS-310L 15-30度阴凉柜

    福意联恒温冰箱,医用加温箱,低温冷柜

    福意联 FYL-YS-310L 15-30度阴凉柜公司说明-----------------------------------------------------------------------------------------------福意联 FYL-YS-310L 15-30度阴凉柜产品别称:医用恒温箱、医用加温箱、手术室恒温箱、手术室加温箱、输液恒温箱、输液加温箱 、生理盐水恒温

    作者:北京福意联医疗设备有限公司 福意联恒温冰箱,医用加温箱,低温冷柜
    2023-11-25505
    融化甘露醇的加温箱

    融化甘露醇的加温箱,恒温箱,冷藏柜

    融化甘露醇的加温箱介绍:北京福意联公司企业央视一经推出,了良好的反响,很多用户更加放心的跟企业合作,让企业真正的进入高速发展的阶段。也希望有越来越多的企业和个人与福意联合作,携手发展,共创辉煌! 融化甘露醇的加温箱参数: 融化甘露醇的加温箱扩展知识分享:安装原则1)发射面到液位的距离,应小于选购仪表的量程。发射面到液位的距离,应大于选购仪表的盲区。的发射面应该与液体表面保持平行。的安装位置应尽量

    作者:北京福意电器有限公司 融化甘露醇的加温箱,恒温箱,冷藏柜
    2023-11-25305
    CC-PDIS01霍尼DCS备件 51405042-175数字输入模件

    CC-PDIS01霍尼DCS备

    免责声明:AMIKON我们销售新产品和停产产品,立渠道购买此类特色产品。阿米控不是本网站特色产品的授权分销商、经*商或代表。本网站上使用的所有产品名称/产品图片、商标、和徽标均为其各自所有者的财产。带有这些名称,图片、商标、和徽标的产品描述、描写或销售仅用于识别目的,并不表示与任何权利持有人有任何关联或授权。P139PTB04 ATEX3044 P1393604544AW00E011ft6102-

    作者:厦门阿米控技术有限公司 CC-PDIS01霍尼DCS备
    2023-11-24299
    希戈纳在线红外成像防爆云台,实现大范围远距离VOC泄漏监测

    在线红外成像云台,在线红外检漏仪,在线红外检漏云台

    大部分**物气体化学键或官能团的原子处于不断振动状态,其振动频率与红外光的振动频率相当。若红外光照射**物分子时,分子中的化学键或官能团发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,被形象称之为 “红外指纹区”。当出现气体泄漏时,气体会吸收大气空间中特定波长的红外线,用对应波段的红外成像检漏仪即可观测到气团在空间的分布形态。• VOCs 气体红外检漏仪,工作波段 3.

    作者:希戈纳(上海)科技有限公司 在线红外成像云台,在线红外检漏仪,在线红外检漏云台
    2023-11-24590
关于八方 | 八方币 | 招商合作 | 网站地图 | 免费注册 | 一元广告 | 友情链接 | 联系我们 | 八方业务| 汇款方式 | 商务洽谈室 | 投诉举报
粤ICP备10089450号-8 - 经营许可证编号:粤B2-20130562 软件企业认定:深R-2013-2017 软件产品登记:深DGY-2013-3594
著作权登记:2013SR134025
Copyright © 2004 - 2024 b2b168.com All Rights Reserved