词条
词条说明
随着Internet上文档信息的迅猛发展,文本挖掘成为处理和组织大量文档数据的关键技术。存储信息使用较多的是文本,所以文本挖掘被认为比数据挖掘具有更高的商业潜力. 当数据挖掘的对象完全由文本这种数据类型组成时,这个过程就称为文本数据挖掘. 事实上,较近研究表明公司信息有80 %包含在文本文档中。 数据挖掘(Data Mining),就是从存放在数据库,数据仓库或其他信息库中的大量的数据中获取有效
互联网自产生那天起就有着强大的功能,随着世界网民数量的激增,近十年来,移动互联网网民更是呈现指数级的增长。在Web2.0的新环境下,基于互联网的舆论平台包括论坛、微博、微信、QQ、网络购物商业平台等所有开放平台成为巨大的信息场,这些信息不仅巨大(数据存储量已经从TB级别升至PB级别),而且体现了及时性、互动性、流动性等属性,传统的数据收集(主要指结构性数据)和舆情分析方法处理能力非常有限,也影响
伴随着计算机的日益普及,互联网的迅猛发展,文本的数量(电子邮件、新闻、网页、科技论文等)在不停的增长,因而对文本作智能化处理以获取所需信息的需求日益迫切。在这样的社会需求下,自然语言处理技术的地位和作用日益重要。经过几十年的研究,计算机 处理自然语言的理论基础日趋成熟,应用范围也越来越广,初步形成了面向各种不同应用和研究的技术体系。分词作为自然语言处理的* 一个步骤,是其他高层应用的基础,起着较
随着计算机技术和网络技术的*发展,互联网上共享的文本呈海量趋势增长,包括各种环境下的大文本和社交媒体文本等。如何有效存储、管理、检索和使用这些文本数据,是摆在人们面前巨大的挑战和亟待解决的研究问题。文本语义分析与挖掘是解决上述问题的基础。 互联网大环境下的共享文本具备特殊的属性:1)半结构化;2)多尺度;3)海量;4)复杂关联;5)多样化。LJParser文本语义分析系统结合人工智能、统计分析
公司名: 灵玖中科软件(北京)有限公司
联系人: 张宝
电 话: 010-62648216
手 机: 13681251543
微 信: 13681251543
地 址: 北京海淀北京市海淀区苏州街49-3号盈智大厦5层
邮 编: